《倒数的认识》的优秀教学设计推荐

数学老师在进行课堂教学之前,往往会根据教学内容来设计教学方案,以便教学的顺利进行,接下来让我们来看看《倒数的认识》的优秀教学设计吧。

倒数的认识教学设计一

教学内容:

教材第36页例7、“练一练”,第39页练习六第16~21题,思考题。

教学目标:

1.使学生经历“找乘积是1的两个数”和“找一个数的倒数”的过程,认识和理解倒数的意义,掌握求一个数的倒数的方法。

2.使学生在认识互为倒数的两个数的特点的过程中,发展观察,比较和抽象、概括等思维能力。

教学重点、难点:

理解倒数的意义,学会求一个数的倒数。

教学过程:

一、导入新课

谈话:同学们,“朋友”这个词对我们来说已经非常熟悉了,能说说教室里哪些同学是你的朋友吗?

指名回答。

谈话:在将近六年级学习生活中,很多同学生建立了深厚的友谊,“朋友”是两个人之间的一种关系,在数学中,数与数之间也存在一些关系,比如两个数的乘积是1,就可以说是这两个数之间的一种关系。哪些数之间有这种关系呢?怎样找这样的两个数呢?这是我们今天要研究的问题。

二、学习新知。

1、理解倒数的意义。

(1)出示例7,学生独立完成。

下面的几个分数中,那两个数的乘积是1?

学生回答,教师板书:

× =1 × =1 × =1

(2)引出概念。

乘积是1的两个数互为倒数。例如 和 互为倒数。可以说 是 的倒数, 是 的倒数。

引导:请大家仔细观察,刚才我们找出的这些算式有什么共同特点?

学生交流后明确:这些算式里两个数的乘积都是1.

指出:像这样乘积是1的两个数互为倒数。

(3)学生举例来说。进行及时的评议。

(4)追问:怎样的两个数互为倒数?为什么要说“互为倒数?”

小结:倒数不是指一个具体的数,而是表示两个数之间的一种关系,当两个数乘积是1时,这两个数互为倒数。

2、归纳方法

(1)提问:我们已经知道了乘积是1的两个数互为倒数,你能分别找出 和 的倒数吗?

指名学生回答,并说出想的过程, × =1 × =1

提问:观察上面互为倒数的各组数,它们的分子和分母位置发生了什么变化,把你的发现与同桌交流。

小组讨论:引导观察倒数和原数的关系,想一想一个数的倒数与原数相比,分子、分母的位置发生了什么变化?

指名回答:找一个分数的倒数只要交换分子、分母的位置。

追问:0有倒数吗?为什么?1呢?

指出:因为0和任何数相乘的积都不会是1,所以0没有倒数。1的倒数是1。

除0以外,在求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

3、教学“练一练”

学生回答。

提醒学生正确地书写格工。如求 的倒数,写作: 的倒数是 ,不能写成 = 。

三、巩固练习。

1、做练习六第17题。

学生分别说出每个数的倒数,并选择几个数说说是怎样想的。

2、做练习六第18题

学生独立宛成,再集体交流,选择两题让学生说说思考的过程。

3、做练习六第19题

练习之前明确要求:观察每组的3个数有什么共同点,写出的倒数又有什么共同点,带着问题边写边观察。

全班交流结果,板书每组里各数的倒数。

提问:你发现每组数和它们倒数的特点了吗?把你的发现和大家交流。

提出:从这四组数可以看出:真分数的倒数是假分数,大于1的假分数的倒数是真分数;几分之一的倒数是几,几的倒数是几分之一。

4、做思考题。

启发:联系倒数的意义想一想,要使三个分数乘积是1,[板书:( )×( )×( )=1]必段符合什么条件?

引导:通过交汉我们知道,三个分数乘积是1,其中两个分数的乘积和第三个分数互为倒数,你能在这七个分数里分别找出这样的3个分数吗?试着找找看。

学生先尝试练习,再集体交流。

四、全课总结

这节课学习了什么内容?什么是倒数?怎样求一个数的倒数?

五、作业

补充习题。

板书计划:

倒数的认识

乘积是1的两个数互为倒数。

求一个数的倒数时,只要把这个数的分子和分母调换位置即可。

倒数的认识教学设计二

学习目标:

1、理解倒数的意义,掌握求一个数倒数的方法,能准确熟练地写出一个数的倒数。

2、通过独立思考、小组合作、展示质疑,在探索活动中,培养观察、归纳、推理和概括能力。

3、激情投入,挑战自我。

教学重点:求一个数倒数的方法。

教学难点:1和0倒数的问题。

教学过程:

离上课还有一点时间,咱们先聊一会吧。同学们,我给你们代数学课多长时间了?(一年)一年时间虽然不是很长,但我觉得我们之间已经互相成为了朋友,你有这种感觉吗?该怎样表述我们之间的朋友关系呢?(你是我的朋友,我是你的朋友,互相应该是双方面的。)就先聊到这儿吧?好,上课!

一、导入:

同学们,在上数学课之前,老师想考你们一个语文知识,怎么样?(出示“杏”和“呆”)看到这两个字,你发现了什么?

生:上下两部分调换了位置,变成了另一个字。

师:对了,把其中任一个字上下两部分倒过来,就变成了另一个字,这个现象很有趣很奇妙吧!

师小结:这种奇妙有趣的现象不仅出现在语文中,其实在数学中也存在着,想了解吗?今天我们就一起揭秘这种现象,好吧?

二、合作探究:

(一)揭示倒数的意义

1.(出示例题课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。

请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。

师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)

师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)

师板书:乘积是1的两个数互为倒数。

你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)

师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像课前我们聊得话题,老师和你互相成为了好朋友,就是说“老师是你的朋友”,“你是老师的朋友”,我们俩是双方面的。

(二)小组探究求一个倒数的方法

1.出示例题2课件:下面哪两个数互为倒数?

师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。

出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)

提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)

师板书:求倒数的方法:分数的分子、分母交换位置。

同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。

2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。

3.出示课件想一想。

我的发现:1的倒数是(1),0(没有)倒数。

师提问:(1)为什么1的倒数是1?

生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)

(2)为什么0没有倒数?

生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)

4.探讨带分数、小数的倒数的求法

师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下,把你们讨论的结果填在表格上。(课件出示)

你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。

(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件5)。

当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现:

发现1:带分数的倒数都(小于)本身;

发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。

发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。

(三)学以致用:

师:探究到这里,大家肯定有了很大的收获,现在请大家闭上眼睛休息一下,休息时想一想什么是倒数?再想一想求倒数的方法是什么?让学生再次记忆找倒数的方法。

1.想不想检验一下自己学的怎么样?

请打开课本24页完成做一做和25页练习六的第4题,(让学生做在课本上,并找学生口答做一做的题。练习六的第4题连线用投影展示学生的作业)。

2.(课件出示)请你以打手势的形式告诉老师你的答案。

(四)全课总结

今天学习了什么?我们一起回顾总结出来好吗?

什么叫倒数?怎样找出一个数的倒数?

倒数的认识教学设计三

教学目标:

1、引导学生通过观察、研究、类推等数学活动,理解倒数的意义,总结出求倒数的方法。

2、通过互助活动,培养学生与人合作、与人交流的习惯。

3、通过自行设计方案,培养学生自主探索和创新的意识。

教学重点:

理解倒数的含义,掌握求倒数的方法。

教学难点:

掌握求倒数的方法。

教学过程:

一、导入

1、找一找下面文字的构成规律。学生分组交流,找出文字的构成规律。

2、按照上面的规律填数。

3、揭示课题。今天,我们就来研究这样的数——倒数。

二、教学实施

1、师:关于倒数,你想知道什么?

2、学习倒数的含义。

(1)学生观察教材第28页主题图。

(2)学生根据所举的例子进行思考,还可以与老师共同探讨。

(3)学生反馈,老师板书。

学生可能发现:

每组中的两个数相乘的积是1。

每组中两个数的分子和分母的位置互相颠倒。

每组中两个数有相互依存的关系。

(4)举例验证。

(5)学生辩论:看谁说得对。

(6)归纳:乘积是1的两个数会为倒数。

3、特殊数:0和1。板书:0没有倒数,1的倒数是它本身。

4、求倒数的方法。

(1)出示例1.

(2)归纳方法:你是怎样求一个数的倒数的?板书:分子和分母调换位置。

5、反馈练习。

(1)完成教材第28页的“做一做”。学生独立解答,老师巡视。

(2)完成教材第29页练习六的第1-5题。

三、课堂作业设计

1、找一找下列各数中哪两个数互为倒数。

2、填空。

(1)三分之四的倒数是( ),( )的倒数是六分之七。

(2)10的倒数是( ),( )的倒数是1。

(3)二分之一的倒数是( ),( )没有倒数。

倒数的认识教学设计四

教学目的:

1.使学生理解倒数的意义。掌握求一个数的倒数的方法。

2.渗透事物都是普遍联系观点的启蒙教育。

教学重点:理解倒数的意义和怎样求倒数。

教学难点:求倒数方法的叙述。

二、引新:开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

三、自学新课:

自学书本p19。并思考以下问题:

1)什么叫倒数?

2)怎么求一个数的倒数?

3)是不是任何数都有倒数?小数有吗?带分数有吗?

四、讨论辨析:

1.什么叫倒数?

2.看下面四道题,你能说一些什么有关“倒数”的话。

3.存在倒数有那些条件

1)两个数。

2)这两个数的乘积是1。

4.能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

5.概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

6.总结求一个数的倒数的方法。

五、练习

1.判断下列各组数是否互为倒数,为什么?

2.同座同学相互举出几组倒数。你怎么知道同学说的对不对?

1)5的倒数是多少?

2)所有的自然数都有倒数吗?1的倒数是几?

3)0有没有倒数?为什么?

4)怎样求一个数的倒数?

4.完成课本p19页的“做一做” 。

5.辨析:求3/5的倒数,写作:3/5=5/3。

五、思考:0.2的倒数是多少?

六、小结。

请学生说一说这节课学习了哪些内容。

倒数的认识教学设计五

教学内容:六年级上册第二单元倒数的认识。

教学目标:

1、使学生理解倒数的意义,掌握求倒数的方法。

2、提高学生观察、比较、、概括的能力。

3、感悟“变通”的数学思想。

教学重点:倒数的意义与求法。

教学难点:理解“互为”的意义,明确倒数只是表示两个数间的关系。

教学程序:

一、 激趣导入,揭示课题。

师:听到大家用如此洪亮的声音向我问好,我就知道,你们一定非常喜欢上——“数学课”。恩,激动+感动=我有信心上好数学课,你们有信心吗?不过,今天我倒是想先考大家一个语文知识方面的小知识。请看:出示:“杏”“呆”,看到这两个字,你发现了什么?

(生:上下两部分调换了位置,变成了另一个字)

师:对了,上下两部分倒过来了,变成了另一个字,这个现象很有趣很奇妙吧!

再出示“吴”,让学生得出“吞”。

师总结:这是语文中的有趣的倒数现象,其实在数学中,也存在着这种奇妙的有趣的现象,今天这节课我们就来研究两个数之间的倒数关系,揭示课题:倒数的认识

二、引导质疑,自主探究。

1、引导质疑。

师:同学们,看到“倒数”这个数学新名词,你想了解关于倒数的哪方面的知识?谁能告诉老师?

生:什么是倒数? 生:倒数是指一个数吗?

生:倒数应该怎样表述? 生:怎样求倒数?

生:倒数是不是一定是分数? 生:倒数有什么用?

生:是不是每个数都有倒数? ...........

2、游戏比赛,理解倒数的意义。

师:同学们想探究的知识还真不少,在研究这些问题之前,我们先来一项比赛,好不好?

好,请大家准备好课堂练习本,请你写出乘积是1的乘法算式,同样的算式不能重复,而且还要书写规范,写得字迹潦草的不算数。时间1分钟。

准备好了吗?开始……

师:时间到,停!举手的方式比一比谁写得最多。让他把写的算式念出来,和大家共同分享。

(生读,师有选择的板书在黑板上。 )

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?生:无数个

师:为什么能写这么多呢?你们有什么窍门吗?

生:因为我们所写的这两个数的乘积都是1。将其中一个分数的分子分母颠倒就能写出另一个数。

3、揭示倒数的意义

师:请同学们观察这些算式,小组内互相说一说它们有什么共同的特点?

生可能回答:乘积都是1;两个因数的分子分母颠倒了位置。。。。。。

师归纳总结:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来竟有如此重大的发现,平凡之中见伟大,像符合这种规律的两个数叫做什么数呢?请同学们阅读课本第24页例1,并找出倒数的意义。

师板书:乘积是1的两个数互为倒数

你认为哪个词非常重要?你是如何理解“互为”的?生回答

(小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

强调:(1)乘积必须是1。

(2)只能是两个数。

(3)倒数是表示两个数的关系,它不是一个数。

4、小组探究求一个倒数的方法

师:同学们知道了什么是倒数,你能求出一个数的倒数?

请大家打开课本第24页,自学例题2。可以同桌之间相互交流一下自学的感想和遇到的困惑。

汇报自学成果。找学生板演。分类探索一个数的倒数的求法:分数、整数、带分数、小数。

小结:如何求一个数(0除外)的倒数,把这个数的分子和分母调换位置。如果这个数是带分数或者是小数,先把这个数化成分数再求倒数。

三、巩固练习,内化提高。

1、判断题。

2、真分数的倒数、假分数的倒数、分数单位、整数的倒数的特殊现象。

师:出示一组真分数。请大家拿出练习纸,先找出下面每组数的倒数,再看看你能发现什么。

交流发现:

师:第一组数的倒数各是多少,你们有怎样的发现?谁愿意上来展示一下。

(的倒数是,的倒数是,的倒数是,这组分数都是真分数,它们的倒数都是假分数。) 师:是不是所有真分数的倒数都是假分数?

(出示结论:所有真分数的倒数都是假分数)

师:第二组 (这组分数都是假分数,它们的倒数都是真分数。)

师:是不是说所有假分数的倒数都是真分数? (不是所有的假分数的倒数都是真分数,如果假分数的分子和分母相同,它的倒数就仍然是假分数。)

师:你说的就是等于1的假分数。 而第二组中的分数都是什么样的假分数?

(都是大于1的假分数。)

所以——(卡片结论:大于1的假分数的倒数都是真分数。)

师:第3组呢? (这组分数的倒数都是整数。)

这组分数有什么特点?(分子都是1,即分数单位)而它们的倒数都是(整数)(出示结论:分数单位的倒数都是整数)

师:第四组呢? (…… 这组都是整数,整数的倒数都是分子为1的真分数。)

师:是不是所有整数的倒数都是分数单位?

(出示:非零整数的倒数都是分数单位)

师:通过大家的研究,我们发现倒数有这样的规律——(齐读)。

四、总结反思,发展能力。

师:今天我们学习了倒数的有关知识,请同学回忆一下你们是怎样学习的?师:你能用“我学会了--”来描述今天学到的知识吗?

生:.......

五、学科融合

今天的数学知识在同学们的共同努力下非常圆满地探索结束,在即将下课的一点点时间里,我还想和大家一起分享一点语文小知识,可以吗?

接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客 ”, 这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。

后来民间有人对出了绝妙的下联:“僧游云隐寺,寺隐云游僧”。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。

在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。语文、数学学科存在着无穷的有趣的奥秘,除此之外的更多学科中也存在着更加神奇而丰富的奥秘,希望同学们不要分主课副科,认真学好每一门学科,好吗?

本站除标明"本站原创"外所有图文版权归创作人所有,如有冒犯,请直接联系地摊文学网,我们将立即予以纠正并致歉!转载请注明出处:《倒数的认识》的优秀教学设计推荐http://www.0771td.com/juzi/11245.html